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ABSTRACT

This paper addresses the issue of modeling the white light fringe. We developed analytic technique for extract-
ing the phase, visibility and amplitude information as needed for interferometric astrometry with the Space
Interferometry Mission (SIM). The model accounts for a number of instrumental and physical effects and is
able to compensate for a number of operational regimes. In particular, we were able to obtain general solution
for polychromatic phasors and address properties of unbiased fringe estimators in the presence of noise. For
demonstration purposes we studied the case of rectangular bandpass filter with two different methods of optical
path difference (OPD) modulation - stepping and ramping OPD modulations. A number of areas of further
studies relevant to instrument design and simulations are outlined and discussed.
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1. INTRODUCTION

SIM is designed as a space-based 10-m baseline Michelson optical interferometer operating in the visible wave-
band (see Ref.! for more details). This mission will open up many areas of astrophysics, via astrometry with
unprecedented accuracy. Over a narrow field of view SIM is expected to achieve a mission accuracy of 1 pas.
In this mode SIM will search for planetary companions to nearby stars by detecting the astrometric “wobble”
relative to a nearby (< 1°) reference star. In its wide-angle mode, SIM will be capable to provide a 4 pas pre-
cision absolute position measurements of stars, with parallaxes to comparable accuracy, at the end of a 5-year
mission. The expected proper motion accuracy is around 3 pas/yr, corresponding to a transverse velocity of
10 m/s at a distance of 1 kpc.

The SIM instrument does not directly measure the angular separation between stars, but the projection of
each star direction vector onto the interferometer baseline by measuring the pathlength delay of starlight as it
passes through the two arms of the interferometer. The delay measurement is made by a combination of internal
metrology measurements to determine the distance the starlight travels through each arm, external metrology
measurements that determine the length and local orientation of the baseline, and a measurement of the central
white light fringe to determine the point of equal optical pathlength. The current algorithms and simulations for
optical interferometry are all based on monochromatic light. This is a good approximation for some of existing
testbed configurations that use as many as 80 spectral channels for dispersed light. Nominally the flight system
will use four to eight channels for guide interferometers. Because of the large bandwidth of each channel (87.5
nm), the quasi-monochromatic assumptions are not valid, and modifications to the algorithms are necessary.

This paper discusses analytic model for the white light fringe data extraction. Our goal here is to establish
functional dependency of the white light fringe parameters on the instrumental input parameters. The problem
of interference of electromagnetic radiation is well studied and extensive number of publications on this subject
are available (see Refs.2~10 and references therein). While numerical studies have proven to be extremely
valuable in analyzing the interference patterns and are very useful in addressing various instrumental effects,
the analytical methods may provide the much needed critical understanding of the white light interference
phenomena. It will be demonstrated below that analytic solution may be used as a tool to study the complex
interferometric phenomena on a principally different qualitative level. %7
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2. PARAMETERIZATION OF POLYCHROMATIC FRINGE PATTERN

Description of the interferometric pattern in the polychromatic case that involves a finite bandwidth of radiation
- is a complicated task. Thus, the observational conditions in the case of polychromatic light are significantly
altered compare to the simplicity of the monochromatic process. In general, all the quantities involved are
complicated functions of the wavelength. A way to describe this process is to collect contributions of all
infinitesimal constituents of polychromatic light at different wavelengths within the bandwidth of the incoming
electromagnetic radiation.? In other words, the total number of photo-electron counts, N, registered by a CCD
detector per wavenumber and per unit time, may be given by the following expression:

dN (k,t) = F(k)To(k) (1 + V (k) sin [¢(k) + k:c(t)])dk dt, (1)

where F(k) is a dimensionless factor representing the total instrumental throughput; Zo(k), V (k) and ¢(k)
are the intensity, visibility and phase of the incoming light; z(¢) is modulated internal delay. We are using a
nomenclature where a wavenumber & relates to the wavelength as follows k = 27" We also accounted for the
nominal 5 phase shift due to the SIM beam splitter, which produces a sine fringe rather than a cosine one.

Note that the total instrumental throughput depends on a number of other factors, some of these are the
collective area of the detector, quantum efficiency of CCD, and overall spectral response of the instrument.
Our goal here is to derive observational equation that may be used to estimate the apparent fringe phase and
visibility. Effects that are not included in the model are due to polarization of both incoming light and the
instrumental throughput, effect of the wavefront-tilt, low frequency vibrations, drifts, jitter, etc. To estimate
the true source visibility and phase one would have to perform a set of additional calibration and estimation
procedures that will be addressed elsewhere.

2.1. Integration Over the Spectral Bandwidth

Let us first perform integration over the SIM wavenumber bandwidth k € [ksgy, k], Where ks = 450 nm is
the beginning of the SIM bandwidth, and kg’m = 950 nm is the end of this bandwidth, thus k € [450, 950] nm.
A formal integration of Eq.(1) over dk leads to the following result
e .
N(t)Aksyy = N(k,t)dk, Aksiy = kg — ksu- (2)
Kgn

In the case of channeled (or dispersed) spectrum output, the integration of this equation over the range of
wavenumbers is straightforward. For this purpose, we designate index, ¢, to denote a particular spectral channel.
Suppose that there exists a total of L spectral channels, thus £ € [1, L.

Definition for the spectral channel £ implies the width of the channel Ak, = k} — k; and existence of a
“central” wavenumber k; within this channel. We also, assume continuous spectrum within the bandwidth, so
that there is no gaps exist in the interval k € [kapy, kazu]. A consequence of this is the equality k. = k', which
leads to the following discrete representation of the bandwidth

L L
Aksiy = kg — ks = Y _ (kf —k7) =) Ake. (3)
=1 =1
Result Eq. (3) allows us to rewrite Eq. (2) as follows:
ko Lokl L
N(t)Akspy = / N(k,t)dk =3 / N(k,t)dk = 3 No(t)Ake, (@)
kst e=1 Jke e=1
where Ni(t) is the instantaneous number of photons within a particular spectral channel given as below
1 [k
Ne(t) = N ]-'(k).'[o(k)(l + V(k)sin [¢(k) + kx(t)])dk. (5)
e Ji;

This equation will help to focus our attention from the discussion of coherent processes within the whole wide
bandwidth, onto addressing these processes on a smaller scale — within a particular narrow spectral channel, £.
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2.2. Definitions for the Fringe Parameters
At this point, it is convenient to introduce a set of useful notations. First of all, we define the average total
intensity of incoming electromagnetic radiation, Zo,, within the ¢-th spectral channel as

1k
Toe = Ak o F(k)Io(k)dk. (6)

It is natural to introduce normalized intensity of light Zoe within the £-th channel:

. FRTk) L[, _
Loe(k) = T, with N . Zoe(k)dk = 1. (7)
These new notations allow to present Eq. (5) as given below
1k
No(t) = Toe (1 + Ak )i Zoe(k)V (k) sin [¢(k) + ka:(t)]dk). (8)
[3

2.2.1. Fringe Visibility, Mean Wavenumber and Phase

To further simplify the obtained equation, we will introduce functional form the fringe visibility, the phase and
the wavenumber notations. Thus, the fringe visibility, Ve, within the £-th channel is given as

1 ki
Voe = Ak . Toe(k)V (k)dk. 9)

(4

Similarly to Eq. (7) we denote normalized visibility in the channel as

5 oy _ Toe(R)V (k) _ F(k)To(k)V (k) 1k

Voe(k) Voe(k)dk = 1. (10)

Voe ToeVoe ' Ak, ky

These definitions help us to re-write equation (8) in the following compact form
1 kE
Ne(t) =Zoe (1 + Voe-A—k- / Voe(k) sin [¢(k) + km(t)]dk). (11)
¢ Jky

We define mean wavenumber, k¢, and mean phase, ¢¢, for the £-th spectral channel as given below

1 kf 1 kF
ke = —— Toe(kYkdk = ——+— F(k)Io(k) k dk, 12
¢ Ak Jy. oe(k) TorBke Jy. (k)To(k) (12)
There are two ways to define the phase within the channel. Thus, it is tempting to define the mean phase as
1 kf 1 54
= — Loe(k)p(k)dk = ——— F(k)Io(k)o(k)dk. 13
b= 3 ), Db = pxe | FRTR0 (13)

This is acceptable for narrow spectral channel, however for a wide channel one needs a more convenient form:

p(ke), which is b(ke) # oo, (14)

and is simply the phase value at the specific wavenumber. In our further analysis we will be using this later
definition. The three introduced quantities (i.e. the visibility, mean wavenumber k; and phase at the mean
wavenumber @(k;)) allow to proceed with integration of Eq. (11).
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2.3. Complex Fringe Envelope Function

Definitions introduced in the previous Section allow us to separate functions k, and ¢(k;) from the functions
with dexplicit dependency on the wavenumber k. As a result, Eq. (11) may be presented as below

oF
Ne(t) = Toe (1 + Voesin [$(ke) + kez(t)] - A_lch / “Voe(k) cos [(k — ke)z(t) + d(k) — $(ke)] dk +
ke
1 [k,
+ Voe cos [¢(ke) + ke (t)] - Ak / Voe(k) sin [(k — ke)z(t) + d(k) — ¢(k‘e)]dk>. (15)
ke
To further simplify the analysis, we introduce the complex fringe envelope function, W, [Ake, dke), z(t)]:

; L P .
Wz[Ake,¢(kg),m(t)] = A_ke/k_lvoz(k)eJ ((’c ke)z(t)+o(k) ¢(k4))dk_ (16)
¢

As a complex function, W, may be equivalently presented by its real, Re{ We}, and imaginary, Im{Wg}, components:

We = Re{W.}+jIm{W.}, with (17)
. k§

Re{W,} = 'Alki /k " Voe(k) cos [(k — ke)a(t) + o(k) — d(ke)] dk

Im{W,} = Zlk_g /k Voe(k) sin [(k — ke)a(t) + $(k) — d(ke)) dk. (18)

The complex envelope function, given by Eq.(16)-(18), allows us to present expression (15) in a simpler form:
Ne(t) = 102(1 + Voesin [¢(ke) + kea(t)] -Re{We [z(t)]} + Voe cos [B(ke) + kea(t)] -|m{v"w [:c(t)]}). (19)

Function, W, [.’n(t)], as any complex function, may also be represented by its amplitude and its phase, namely:
We[Ake, g(ke), ()] = Ee[Ake, d(ke), z(t)] Felbredke)zO], (20)

where & and §2; are the amplitude and phase correspondingly. For the complex envelope function Eq. (17) these two
are given by &(t) = \/Rez{Wg} + Imz{We}, and Qe(t) = ArcTan{Im{Wg}/Re{Wg}}. Finally, we re-write Eq. (19) as

Ne(t) = Zoe (1 + Voe Ee(t) - sin [¢(ke) + kex(t) + Qe(t)]) (21)

Note that the apparent visibility of the fringe now is the product of the true averaged visibility and the modu-
lus of the phase corrected Fourier transform of the filter function, evaluated at the current delay or [z = VoW, =

Voe Ee gJ (stkor+ac) . The transfer function W, describes the coherence envelope.? If Voe (k) ~ F(k)Zo(k)V (k) is symmetric,
then W, is real valued, Q¢ = 0, and only at zero delay,® where the envelope is at peak, is the true visibility observed.

2.4. Temporal Integration

The last integration to be performed in Eq.(1) (or equivalently Eq.(21)), is the integration over time. The optical
pathlength difference may be modulated either as a set of discrete values corresponding to a number of steps in the OPD
space (stepping PZT modulation) or by ramping PZT over the range of OPD values. The total integration time, At, is
the sum of durations of eight temporal bins.

N
At=t*—t7 =) Am, with An=tf -t . (22)




Direct integration of Eq. (19) leads to expression for the total number of photons collected at each PZT stroke:

t+ N t;‘“ N
NeAt = Ne(tydt =" / Ne(tydt =) NuA. (23)
t- i=1 vt i=1

where Ng; A7 is the total number of photons collected in a particular i-th temporal bin and for the ¢-th spectral channel.
Substituting N¢(t) from Eq. (21) directly into Eq. (23), one obtains following expression for Ng;:

Neo =

(1 + Voe sin ¢(ke) . gg(t) © COS [kzz(t) + Qe(t)] + Ve cos ¢(ke) . gz(t) . sin [kew(t) + Qg(t)]) . (24)

To complete this integration, we assume that quantities Zo,, Vor, ¢(ke), and ko do not change with time during
the photon-counting intervals. The only quantity that is explicitly varies with time — is the OPD z(t).

Integration over time may be performed in a general form and expression for Ny; is given as follows:

Ne = Ioe (1 + Voesin ¢(ke) - Re{Pe: } + Voe cos d(ke) - |m{75u}), (25)
with quantities Re{'ﬁei} and Im{’ﬁei} given as below:
- tF
Re{Pe} = AlT' dt E¢[Dke, (ke), 1(t)] cos [kex(t) + Qe[Dke, dlke), (1)) ],
T t‘._
it
Im{Ps} = AlT. dt E[ Ak, @ke), x(t)) sin [kex(t) + QulAke, d(ke), 2(t)]]. (26)
7 ti_

For convenience of further analysis, we combined these two real-valued matrices into one complex matrix Py;
Pu = Re{Pu}+jIm{Pu}. (27)

Furthermore, using definitions Eq. (26), this complex matrix may be presented as given below

73‘% = i / dté'e’ (kam(t)+ﬂz[Ake,¢(ke) m(t)] / d e kex(®) We[Akz d(ke), ()] (28)

where the complex envelope function W, given by Egs. (16)-(16). Eq. (28) may further be transformed
to establish its true dependency on time and wavenumber. To do this, we substitute the expression for the
complex envelope function from Eq. (16). Thus, one obtains the following expression for the matrix Pp;:

P - / “t b FRYTo(R)V (k) (<=H6®1-0(k0) (29)
“ ZoeVoeAkeAT; Jo= Ji; 0 '

Finally, we have defined everything that is needed to study Eq. (25), for the polychromatic fringe, which
may equivalently be presented in a matrix form as below (where the complex matrix Py; is given by Eq. (29)):

Ne L Im{Pu}; Re{Pu} Zoe
= s o ZoeVoecos dp(ke) |, (30)
NEN 1; |m{'PeN}; Re{PeN} IoeVoz sin ¢(kg)

The obtained result Eq. (25), (29) (or, equivalently Eq. (30)) constitutes the general form of expression for
the polychromatic fringe. We will use this result to finalize the development of the general from of the observa-
tional model for polychromatic case with arbitrary phase modulation. Ideally, one would need to determine not
only three quantities ZoeVoe cos ¢(ke), ZoeVoe sin(ke), and Zge, but the full functional dependency of the original
quantities. However, the finite width of the observational band-width Ak, complicates the estimation process
by bringing the non-linearity in the observational equation via the envelop function W. Note that if one neglects
the size of the bandwidth Ak, with respect to the mean wavenumber k; or Akg/k; — 0 (the envelop function
becomes unity W — 1), one recovers the full simplicity of the monochromatic case.”




3. SOLUTION FOR POLYCHROMATIC PHASORS WITH NOISY DATA

Currently in use, there are two fringe estimators, one for visibility (the unbiased estimator is V2), and one for
the phase (the unbiased estimator is the complex phasor). The V2 estimator is already worked out in much
detail (i.e. Refs.?-19) if the complex phasor estimator is completed. So the development of the complex phasor
was the main purpose for the presented work. As it is known, the complex fringe visibility can be represented
by a phasor; if the fringe is stable, we can add the phasors vectorially over multiple samples. This co-adding can
provide an improved signal-to-noise ratio. To co-add the fringe phasors requires a phase reference, for instance
the white light phase.

3.1. Parameterization of the Fringe Equation

In this Section we will develop optimally-weighted solution that accounts for a number of noise sources and will
be applicable for a general case of delay modulation. For the purposes of clarity we will omit spectral index £.
All the obtained results are valid for any channel and thus could be easily reconstructed, if needed.

In the case of noisy data, observations of phonon-counts N; are actually done with errors and, in reality, we
observe N; = N; + ¢€;, where N; is the mean value of photon counts at the i-th temporal bin and ¢; is a random
variable. We assume that ¢; are random variables that are primarily due to gaussian statistics. (This approach
may be extended to incorporate other sources of noise. The corresponding results will be reported elsewhere.)
that are distributed around zero and following relations are valid

N; =N, +¢, E(e;) =0, E(ef) = 0?. (31)

In general one must account not only for the Gaussian statistics of read-out process, but also for the Poison
statistic that governs photo-emission (and photo-counting) process. Thus, a correct approach would be to assume
that €; is a sum of two terms €; = ue{ + (1 — p) el’, where €f is Gaussian and €/ is Poissonian variables and p
is a number between 0 and 1. Expected complication arises from the fact that standard deviation computed for
the photon-counting Poissonian bias is actually proportional to the signal (o )2 o Z; (see discussion in Ref.10).
This issue is out of scope of the present paper and will be addressed at a later time.

We also assume that N, are independent, therefore, we may form a diagonal covariance matrix for the
quantities N; (or equivalently for ¢;) with dispersions 2 on the diagonal:

g3, 0; .. 0 o3 0 .. 0
0; o2 .. 0 -1 0; o074 0

Co=| T o | G=GT= 0 P T o | (32)
0; 0 .. 0% 0; 0; .. oy

where G, is the matrix of weights. Therefore, in the case when noise is present in the data, equation (25) has
following form:

Ni+e = I (1 + Voesin @(ke) - Re{Pe: } + Voe cos p(ke) - |m{75£i}>, | (33)
3 N Zoe
- (1; Im{Ps:}; Re{’Pei}) ToeVoe cos ¢(ke) (34)
ZoeVoe sin ¢(ke)
or, equivalently,
Ni+e = Ai X%, (35)

with indexes ¢ and a running as i € {1,..., N} and a € {1,2,3}. Vector X* is the vector to be determined and
matrix AT = Ao is the 3 x N rotational matrix in the phase space. A maximum likelihood solution to the
system of equations (35) may be given by the following system of equations

N .
Xe=3Y Al"N, where Al = (ATG,A)*ATG,, (36)




with AJ being an optimally-weighted pseudo-inverse matrix. Note that by choosing different gain matrix instead
of optimally weighted least-squared matrix Eq. (32), one may obtain solution with different, specifically designed
properties. Nevertheless, our solution has enough embedded generality as it allows for arbitrary properties of
noise contribution, which will be further explored below.

3.2. Optimally-Weighted Pseudo-Inverse Matrix

In this Section we will find solution for the pseudo-inverse matrix Al. To construct this matrix we will use the
weights matrix G, given by Eq.(32) and matrix A, given by Eq.(28) as

A;, = (1; Im{’lsi}; Re{ﬁi}) = (1; Si; ci). 37)

where we denoted s; = Im{'ﬁi} = p;sinm;, ¢y = Re{'lsi} = p;cosm;. This parameterization is stemming from
definition for the complex matrix, P;, given by Eq. (28) and presented in the form

P; = Re{ﬁj} +14 Im{P;} = p; ™, (38)

where p; and 7; are given by p; = \/Re2{75j} + lm2{75,~}, and m; = ArcTan{Im{'ﬁj}/Re{’ﬁj}}.

Calculation of (ATGyA) is straightforward even for the most general case of arbitrary number of temporal
bins (N > 3) and with arbitrary integration intervals (A7; # A7; for ¢ # j) we find:

NN N
1. 1 ZF’;’ z;, zr:,.
T E?’ Eg) ) E?v' . It’ ‘ ;V s? 1‘{7
(A*Gy) = ;?; = SRR I (A"GyA) = YE Y4 Y us (39)
%. c . c & 3 &' T & £
oy’ a3’ N . iy 2
By inverting the obtained result one constructs the covariance matrix A of the following structure:
Z (sic;—ecis;)? 2 (ci—cj)(sic;—cis; _lﬁ(‘g"_"i)("ici_ci’i)
2 2 ! 2 o‘zai 2 L oio}
z] 23
1 N._..._,, cimc)? N o8 (cimcs
A (ATGyA) _&)_ %Z(cl cz)sj;(;; cis;) ZE c) _lz(s, .9[7;!.)2::.I ;) ,
ij
1 N (8i—87)(8:¢c;—ci85) si—s;)(ci—c;) i—s;)?
B P i Z——T{!;g—" 22‘??9“
i
where determinant of the matrix (ATGyA), A, = det||(ATG4A)||, is given as
1 N (S.iCj - sjci)
A, = = — [(sicj — 8i¢i) + (sjcr — ske;) + (skei — sick)], (40)
2 0,050}

with summation over all temporal bins and running from 1 to N, namely V {i,j,k} € [1, N].
These intermediate results allow us to write the solution for the (N x 3) optimally-weighted pseudo-inverse

matrix Al = A:‘,Z in the following compact form:

Al = (ATG,A)'ATG, = — (AE ) (41)
i Y Ck




where coefficients A3, By, C¢ and D° depend on duration of each temporal bin, mean wavenumber and variances
for the data taken in each bin, and are given by

pip;sin[m; — . . .
A = Z ’pj [ i~ (pipj sin[m; — m;] + p;jpk sinfm; — 7k] + peps sin[me — 7r,-]),

k 2707
o N (picosm; — p; cos ;)
Be = Z 20702 (p,p] sinfm; — ;] + p;px sin[m; — 7k + prpi sin[m, — m])
ij
o N (pisinm; — pj sinm;) ) ) _
G = = 2 gger (v sinl ) + gy sinl; = m] + pups sinfri — ),
N N \
D= YA Z (pzpa sinf: — ;] + pjpi sinlm; — me] + pepi sinfme — mi]) (42)
k ijk

3.3. Photon Noise-Optimized Solution for Polychromatic Phasors

An optimally-weighted solution for the quantities X* may be obtained directly now from Eq.(36) with the help
of expressions (41)-(42) in the following compact form:

N N N
Ll - LS g : NPT I g
B = o MeA I3 Vs cos§” = 55> Ni B, I3 VSsing® = 555 Ne €. (43)
k k T

with coefficients of A, BY,Cy and D° given by Egs. (42).

The obtained solution for the polychromatic visibility phasors given by Eq. (43) is given in the form of a
linear combination of weighted photon counts recorded during a particular integration period. This form turned
out to be very when analyzing contributions of CCD pixels that are systematically biased. The obtained result
may be used to de-weight ’bad’ pixels (in a statistical sense) and, thus, to reduce the problem of biases while
estimating fringe parameters. This form allows to express an optimally-weighted solution for visibility, phase
and the constant intensity terms in a familiar compact form:

N _ s N _ 9 N _
(2 NeBR)™ + (3 NeCR) i k CR 2 N A
o= k , 3 = ArcTan[—], b )
(; Ny A2)? Ny B AL

=M=z[==z

The form of the obtained solution is simple to understand and it is straightforward to implement in the
software codes. All the information necessary to calculate the 3N coefficients of A3, B, C; and D° is presumed
to be known before the experiment. Thus, for the case when N = 8 one would have to calculate only 24 numbers
from Eq. (42). These numbers correspond to 8 numbers of A3, 8 numbers of B} and 8 numbers of C{. Then,
by taking the data and estimating variances o; one may process the data with the help of Eqgs. (43) or directly
Eqgs. (44). This approach is currently being utilized and corresponding results will be reported elsewhere.!!

4. RECTANGULAR BANDPASS FILTER

To take advantage of the results derived in the previous section, we must first decide on the properties of the
bandpass filter. This decision in return will affect the properties of the envelop function. Below we shall develop
a model for a special case of the bandpass filter — a rectangular bandpass filter denoted here as F,, which is
done analytically in the following form

L foe = const, ke [kg_ykz-]y
Fk) =Y Folk), where Fe(k) = (45)
(k) = >_ Fe(k) o(k) 0 k & [y, k7).



We can also assume that the width of a spectral channel is small, so that both intensity of incoming radiation,
Zo(k), and apparent visibility, V(k), do not change within the spectral channel (in particular, this leads to
Voe(k) = 1 in Eqs. (9) and (10). Therefore, the following conditions are satisfied with a particular spectral
channel, £:

Zo(k) = const, V(k) = const, Foe = const, d(k) — dlke) = doe(k — ko) + 0(227(2)’ (46)
¢

where dg, = %f’; is the delay within the ¢-th channel.

One may perform integration of the fringe envelope function W, [x(t)] which is given by Eq. (16). To the
second order in phase variation (i.e. O(%?)), the resulted envelope function has following properties:

) 1 +40k, ‘ sin[ Ake(doe + x(t))]
We[Ake, $(ke), 7] = < dr ¢t~ (docta(v) _ A0z 7
o [Ake, ¢(ke), 73 Aks /—,}Ak, ke 3 Ake(doe + z(t)) “

where we introduced a convenient variable, k = k — kg, and remember that Ak, = k; —ky and ke = %(k;’ +k7)
are the width of the spectral channel and the mean wavenumber.

We can now present Eq. (28) for matrix Py; as follows:

tf in[1
75&' = 1 / dt e kexz(t) Sml[zAkl?(doe + JJ(t))]' (48)
AT; o -2-Ake(doe + .’E(t))
At this moment, we introduce another convenient variable, 7 = t — ¢;. Analogously, Ar; = tJ —t; and
t; = %(tj' + ;) are the duration of the temporal integration within the i-th bin and the mean time for this bin
correspondingly. This result is used to transform Eq. (48) as below:

LAT; a1 .
i 1 /+5A (ati+m)—s(z) SinlzAke(doe + z(t: +7))] (49)

= el kex(t) §D,. i D,. — J ke
p& € 67?& with 5Ph ATi —%An dr e %Akl (doe n x(tl n 7-))

The obtained result explicitly depends on the functional form of the OPD modulation, z(¢). To integrate
this equation one first needs to make certain assumptions on the temporal behavior of z(t), which will be done
in the following Sections. At this moment we present Eq. (25) in the following form:

Nu = Iof(l”*‘vozsm [$(ke) + ke (t:)] - Re{6Pei} + Vor cos [¢(ke)+’“f$<“)]"’“{‘”3“}>’ (%0)

where the complex matrix 6Py; is given by Eq. (49). The importance of separating terms with 8Py; is that one
can establish clear correspondence with monochromatic light, for which éPp; = Iy;, the identity matrix.

4.1. Stepping Phase Modulation

The stepping phase modulation realized when the pathlength difference is changes as a set of discrete values
corresponding to a number of steps in the OPD space. mathematically this process represented as follows:

N=8 zi, telty,t}],
z(t)= 3 a(t;),  where m(ti)={ 0t gt (51)

i=1

with t; = 2(¢} +t;). This procedure defines the temporal bins used to modulate the interferometric pattern.




Conditions (51) allow for a significant simplification of temporal integration in Eq. (49). It simply is leading
to a substitution z(t) — z; in Eq. (19), and matrix P;; takes the following form

. o kea(t:) sin(2 Ake(doe + ;)]

P, = 52
“ 1 Aky(doe + ;) (52
As a result, to the second order in the phase variation (i.e. ¢(k¢) = ¢+ O %2,;? . }) Eq. (50) is taking the form:
€ lke
1
Ng,‘ = TZoe (1 + Vbe . SinC[§Ak5 (.’L‘i + doe)] - sin [¢(ke) + kel'i]) . (53)

The obtained result Eq. (53) clearly depends on the particular form of the envelope function. As such, it has
most of the parameters that are necessary for the phase estimation purposes in the case of wide bandwidth.

For the most practical cases the value of the sinc function will be close to sinc ~ 1. Indeed, let us analyze
the argument of this function, %Ake (wi + do¢). Thus, one might expect that within the spectral channel the
phase will stay constant, hence dos = 9¢/0k, ~ 0. Furthermore, for the estimation purposes let us assume that
all the step-sizes z; are essentially z; = 1’1\\, , Where n is the total number of temporal 1ntegrat10n bins, 7 is the
number of a particular temporal bin, i € 1, N, and Ag is the modulation wavelength or Ay = k", where kg is
the corresponding modulation wavenumber. Also remember that width of a spectral channel is ‘elated to the
total SIM bandwidth as Ak, = Aksim/L, where Akgy is the total SIM bandwidth and L is the total number
of spectral channels used for the white light fringe detection Therefore, one has

1 1 _ mi Akgim
"iAkf(mz + dOl) ~ '2-Ak[.’lf,, = m ko (54)
Assuming \g), = 450 nm and A}, = 900 nm, and Ao = 900 nm, thus yielding 254 — 1, The maximal value
for the expression (54) is realized when ¢ = N, thus
wi Dk 7
— < —. 5
LN k ~L (55)

Currently, there are different numbers of spectral channels used to process data from our testbeds. This
number may be as large as L = 80 and as small as L = 4. Of coarse, when L = 80, the ratio n/L becomes
w/L = 0.03927 and, thus, SInC[;Ake-'L';”L —s0 = 0.99974, and similarly for L = 4 the sinc function becomes
sinc[3 Akez;]| =4 = 0.90032. We will address the issue of phase estimation sensitivity to the width of a spectral
channel Akg at a later time.l1

This observation allows us to present the sinc function as a series with respect to the small parameter Ak,z
(with z being defined as 2z = z; + do¢) as

. > ( 1)» Akgz m 1 Akezq2 1 Akezq4 1 Akezq6
smc[ ; 2n+1 9 ] =1- 3|[ 2 ] +'5T[ 2 ] +O(7T[ D) ] )s (56)
one can present the expression Eq. (53) in the following form:
_ Ak3(z; +doe)?  AkF(z; + doe)ty .
N = Toe[t+Voe(1- - -t ) sin [$(ke) + hews] | (57)

The obtained expression models the expected number of photons detected at the CCD for the rectangular
bandpass filter and stepping phase modulation. It extends the results obtained for the monochromatic case on
the finite size spectral bandwidth. This fact is indicated by the explicit dependency of the obtained result on
the width of a spectral channel Ak,. (For the most of the interesting practical applications, the size of the delay
within a particular spectral channel is very small dg, = %‘% ~ 0, which further simplifies Eq. (57)).




4.2. Ramping Phase Modulation

In this Section we will discuss another type of phase modulation — the case when the phase is linearly changes
with time. This modulation utilizes the phase ramping technique.(For more details, see Refs.3-.5 ) To develop
analytical solution we will be using the system equations developed above, specifically Egs. (25) and (28).

The optical path difference for the case of ramping phase modulation is modeled as follows:
z(t) =xzo +v-t, (58)

where z is the initial PZT position and v is the instantaneous velocity of PZT motion. Remembering the
definition for 7 as 7 =t — t;, and Ar; =t} — ¢ and t; = $(t7 +¢7), Eq. (49) takes the form:

. . . - 1 rtian sin[: Akgz(T))
Pu = &*=)sPy, ith 6P = / dr efkem . 22—t 59
u = e w = yan TAke=(r) (%9)
and z(7) = do¢ + z(t;) + v7. This allows us to present Eq. (50) in the following form:
Neu = Toe (1 + Voesin [@(ke) + kex(t:)] -Re{6Pe;} + Voe cos [(ke) + kez(t:)) -lm{sﬁei}), (60)

where the complex matrix of additional rotation in the phase space, 6Py;, is given by Eq. (49). Equation (60)
may equivalently be presented in a matrix form as below

1 0 0 Zoe
Ny = (1; sin kez(t;); coskg:c(ti)) 0 Re{dPu} —Im{6Pu} ) (IoeVoeC%SMke))- (61)
0 Im{6Pu}; Re{0Pu} ToeVoe sin p(ke)

The result of integration of Eq.(59) may not be presented in a compact analytical form. It rather could be
expressed in the form of two functions defined as SinIntegral and Coslntegral. To simplify the analysis, the sinc
function may be given in the form of power series expansion with respect to the small parameter Ak,z(T) as
given by Eq. (56). This expansion allows us to present Egs. (59) in the following form:

+3A7; 2 2 4 4
/ 2 (1 _ Akjz(r) + Akyz(T)

- AkS 26
d J kevt | {4
Te 24 1920 ))’

8Pe: 71.26

+ O( (62)

AT; —3Ar

where 2(7) = doe + z(t:) + vT = 2 + v T with 2; = do¢ + z(t;). This equation, (62), was integrated to obtain
coefficients Re{6P; } and Im{§Ps;} in the fringe equation Eq. (60), that may be written in the following form:

- _ sin[%kevAT,-] 29 1 2 AKZ _ 1 , _A_’fi
Re{iPe} = —Thvan [+ (2 k22 = (Ghevany?) 24k3] 2eoslgkev AT 5ok (63)
- sin[ ks v AT; 1 Ak?
Im{573ei} = 2kezi( - —1[12;;%-&771 + COS[‘Q"WUAT@']) 5@%’ (64)
2 T

with z; = dog + z(t;) = doe + 2o + v ;.

The obtained expression models the photon flux detected at the CCD for the case of rectangular bandpass
filter and ramping phase modulation. It extends the results obtained for the monochromatic case on the finite
size of spectral bandwidth. This fact is indicated by the explicit dependency of the obtained result on the width
of a spectral channel Ak,.




5. DISCUSSION AND FUTURE PLANS

The main objective of this paper has been to introduce the reader to the concepts and the instrumental logic of
the SIM astrometric observations, especially as they relate to estimation of the white light fringe parameters.
The set of formulae described herein will serve as the kernel for the future mission analysis and simulations.
We have also developed a set of expressions that may be used for fringe visibility and phase extraction for both
SIM science and guide interferometers.

The logic of our method is straightforward: one first assumes the desirable properties of the bandpass filter,
then finds the corresponding envelope function, and then applies the obtained expressions (which are valid for a
generic case). The obtained solutions for the envelope function W and, most specifically, 6Py; may be directly
substituted either in the expression for the complex visibility phasors Eq. (42) and (43), or into equations for
the visibility, amplitude and phase of the fringe, given by Egs.(44). We applied this formalism to the case of
a rectangular bandpass. While the complex visibility phasors are linear with respect to photon counts, the
explicit expressions for the fringe parameters are non-linear. This fact may be used to design specific properties
of unbiased fringe estimators for processing the white light data. In our further work we will numerically address
the problem of unbiased estimators for the fringe phase, visibility and group delay. Our simulations also show
that, while the model of the rectangular bandpass filer is working quite, for the ‘real life’ one must account for
the effect of leakage of light. This effect is concerned the leakage of light onto the studied spectrometer pixel of
the detector from the adjacent pixels with different wavenumbers. At this moment, it seams more appropriate
that a combination of the rectangular bandpass filter and the additional effect of light leakage from the adjacent
pixels that must be included into the model of a CCD detector. The corresponding analysis, simulation results
and implications for the instrument design will be reported elsewhere.!!
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